Answer Key
10.3 Using Chords Exercise 1 To bisect a chord means to divide the chord into two segments that have same length. Exercise 2 For example, look at this figure! π΄π΄π΄π΄ is a chord that is not a diameter. Then, rotate π΄π΄π΄π΄ to get πΆπΆπΆπΆ . π΄π΄π΄π΄ is perpendicular to πΆπΆπΆπΆ and they are congruent, but they are not a diameter. So, if two chords of a circle are perpendicular and congruent, one of them does not have to be a diameter. Exercise 3 Form the figure, π΄π΄π΄π΄ β πΆπΆπ·π· . By Congruent Corresponding Chords Theorem, π΄π΄π΄π΄ οΏ½ β πΆπΆπ·π· οΏ½ . So, πππ΄π΄π΄π΄ οΏ½ = πππΆπΆπ·π· οΏ½ = 75 β . Exercise 4 Form the figure, ππππππ οΏ½ = ππππππ οΏ½ = 34 β . So, ππππ οΏ½ β ππππ οΏ½ . By Congruent Corresponding Chords Theorem, ππππ β ππππ . So, UV=TU=5. Exercise 5 Form the figure, ππππ β ππππ . By Congruent Corresponding Chords Theorem, ππππ οΏ½ β ππππ οΏ½ . So, ππππππ οΏ½ = ππππππ οΏ½ = ππππππ οΏ½ + ππππππ οΏ½ = 110 β + 60 β = 170 β . Exercise 6 The radius of β πΆπΆ and β ππ have same length. So, β πΆπΆ β β ππ . Then, from the figure, ππππππ οΏ½ = πππΏπΏπΏπΏ οΏ½ = 120 β . Because ππππ οΏ½ and πΏπΏπΏπΏ οΏ½ have same measure and lie on the congruent circles, so ππππ οΏ½ β πΏπΏπΏπΏ οΏ½ . By Congruent Corresponding Chords Theorem, ππππ β πΏπΏπΏπΏ . So, QR=LM=11. Exercise 7 By Perpendicular Chord Bisector Theorem, π·π·πΈπΈ β π·π·πΈπΈ . So, EG=EJ or x=8. Exercise 8 By Perpendicular Chord Bisector Theorem, πππ π οΏ½ β π π ππ οΏ½ . So, πππππ π οΏ½ = πππ π ππ οΏ½ or π₯π₯ = 40 β .
Exercise 9 By Perpendicular Chord Bisector Theorem, 5x-6=2x+9 5x-2x=9+6 3x=15 x=5 Exercise 10 By Perpendicular Chord Bisector Theorem, (5 π₯π₯ + 2) β = (7 π₯π₯ β 12) β 5 π₯π₯ + 2 = 7 π₯π₯ β 12 5 π₯π₯ β 7 π₯π₯ = β 12 β 2 β 2 π₯π₯ = β 14 π₯π₯ = 7 Exercise 11 It will be true if π΄π΄πΆπΆ is a diameter. So, by Perpendicular Chord Bisector Theorem, π΄π΄πΆπΆ bisects πΆπΆπ΄π΄ and π΄π΄πΆπΆ οΏ½ β πΆπΆπΆπΆ οΏ½ . Exercise 12 Let the control panels as chord π΄π΄π΄π΄ and πΆπΆπΆπΆ . They have the perpendicular bisector that shown on the figure below. By Perpendicular Chord Bisector Converse, ππππ lies on the diameter of the circle. Let point O is the center of the circle. Because the control panels have the same length, so π΄π΄π΄π΄ β πΆπΆπΆπΆ . By Equidistant Chords Theorem, OP=OQ. So, the center of the cross section should lie on the middle of ππππ . Exercise 13 Because π΄π΄πΆπΆ β π΄π΄πΆπΆ , triangle ACD is an isosceles triangle. So, β π΄π΄πΆπΆπΆπΆ β β π΄π΄πΆπΆπΆπΆ . Then, β πΆπΆπ΄π΄π΄π΄ β β πΆπΆπ΄π΄π΄π΄ . So, by the ASA Congruence Theorem, π΄π΄π΄π΄ will divide triangle ACD to be two congruent triangles. So, π΄π΄π΄π΄ is perpendicular to and bisects πΆπΆπΆπΆ . By Perpendicular Chord Bisector Converse, π΄π΄π΄π΄ is a diameter of the circle. Exercise 14
By Pythagorean Theorem, πΆπΆπ·π· = οΏ½π΄π΄πΆπΆ 2 β π΄π΄π·π· 2 πΆπΆπ·π· = οΏ½ 5 2 β 3 2 πΆπΆπ·π· = β 25 β 9 πΆπΆπ·π· = β 16 πΆπΆπ·π· = 4 Because π΄π΄π΄π΄ is perpendicular to πΆπΆπΆπΆ , but does not bisect πΆπΆπΆπΆ , by the contraposition of Perpendicular Chord Bisector Theorem, π΄π΄π΄π΄ is not a diameter of the circle. Exercise 15 From the figure, EF=GH=16. So, π·π·πΈπΈ β πΈπΈπΊπΊ . By Equidistant Chords Theorem, QA=QB. So, QA=QB 4x+3=7x-6 4x-7x=-6-3 -3x=-9 x=3 So, πππ΄π΄ = 4 π₯π₯ + 3 = 4 β 3 + 3 = 12 + 3 = 15. Then, πππ΄π΄ is perpendicular to π·π·πΈπΈ and πππ΄π΄ passes through center Q. So, πππ΄π΄ bisects π·π·πΈπΈ . Then, π΄π΄π·π· = π΄π΄πΈπΈ = 12 β 16 = 8 . πππΈπΈ is one of the radius of the circle. To get the length of radius, we can use Pythagorean Theorem on triangle AFQ. πππΈπΈ = οΏ½πππ΄π΄ 2 + π΄π΄πΈπΈ 2 πππΈπΈ = οΏ½ 15 2 + 8 2 πππΈπΈ = β 225 + 64 πππΈπΈ = β 289 πππΈπΈ = 17 So, the radius of β ππ is 17. Exercise 16 From the figure, by Equidistant Chords Theorem, AD=BC 4x+4=6x-6 4x-6x=-6-4 -2x=-10 x=5 So, π΄π΄πΆπΆ = 4 π₯π₯ + 4 = 4 β 5 + 4 = 20 + 4 = 24 . To get the length of radius, we can use Pythagorean Theorem, πππ΄π΄ = οΏ½ 5 2 + οΏ½ 12 β 24 οΏ½ 2 πππ΄π΄ = οΏ½ 5 2 + 12 2 πππ΄π΄ = β 25 + 144 πππ΄π΄ = β 169 πππ΄π΄ = 13 So, the radius of β ππ is 13. Exercise 17
The radius of the circular part is ππ = οΏ½ 6 2 + οΏ½ 12 β 7 οΏ½ 2 ππ = οΏ½ 6 2 + οΏ½ 72 οΏ½ 2 ππ = οΏ½ 36 + 49 4 ππ = οΏ½ 144 4 + 49 4 ππ = οΏ½ 193 4 ππ = β 193 2 So, the diameter is ππ = 2 ππ = 2 β β193 2 = β 193 β 13.9 inches. Exercise 18 a. By Perpendicular Chord Bisector Converse, π΄π΄π΄π΄ is a diameter. b. By Congruent Corresponding Chords Theorem, π΄π΄π΄π΄ β πΆπΆπΆπΆ . c. By Perpendicular Chord Bisector Theorem, πΊπΊπΈπΈ bisects πΈπΈπΈπΈ . d. By Equidistant Chords Theorem, πΏπΏπΏπΏ β ππππ . Exercise 19 a. Given that π΄π΄π΄π΄ β πΆπΆπΆπΆ . πππ΄π΄ , πππ΄π΄ , πππΆπΆ , and πππΆπΆ are radii of the β ππ , so they are congruent to each other. Let's see triangle PAB and PCD. From the triangles, we know that π΄π΄π΄π΄ β πΆπΆπΆπΆ , πππ΄π΄ β πππΆπΆ , and πππ΄π΄ β πππΆπΆ . By the SSS Congruence Theorem, triangle PAB and PCD are two congruent triangles. So, β π΄π΄πππ΄π΄ β β πΆπΆπππΆπΆ . By Congruent Central Angles Theorem, π΄π΄π΄π΄ οΏ½ β πΆπΆπΆπΆ οΏ½ . b. Given that π΄π΄π΄π΄ οΏ½ β πΆπΆπΆπΆ οΏ½ . By Congruent Central Angles Theorem, β π΄π΄πππ΄π΄ β β πΆπΆπππΆπΆ . πππ΄π΄ , πππ΄π΄ , πππΆπΆ , and πππΆπΆ are radii of the β ππ , so they are congruent to each other. Let's see triangle PAB and PCD. From the triangles, we know that β π΄π΄πππ΄π΄ β β πΆπΆπππΆπΆ , πππ΄π΄ β πππΆπΆ , and πππ΄π΄ β πππΆπΆ . By the SAS Congruence Theorem, triangle PAB and PCD are two congruent triangles. So, π΄π΄π΄π΄ β πΆπΆπΆπΆ . Exercise 20 From the figure, π΄π΄πΆπΆ β π΄π΄πΆπΆ . By Congruent Corresponding Chords Theorem, π΄π΄πΆπΆ οΏ½ β π΄π΄πΆπΆ οΏ½ . Let πππ΄π΄πΆπΆ οΏ½ = πππ΄π΄πΆπΆ οΏ½ = π¦π¦ β . Then, πππ΄π΄πΆπΆπ΄π΄ οΏ½ = πππ΄π΄πΆπΆ οΏ½ + πππ΄π΄πΆπΆ οΏ½ = π¦π¦ β + π¦π¦ β = 2 π¦π¦ β . From the figure, πππ΄π΄π΄π΄ οΏ½ = 360 β β πππ΄π΄πΆπΆπ΄π΄ οΏ½ π₯π₯ β = 360 β β 2 π¦π¦ β Because all the arcs have integer measures, so 360 β β 2 π¦π¦ β must be even. So, π₯π₯ β must be even. Exercise 21 Let's see at this figure!
Let πππΆπΆ is perpendicular to π΄π΄π·π· and π΄π΄πΆπΆ . Because πππΆπΆ passes through the center of the circle, by Perpendicular Chord Bisector Theorem, π΄π΄πΈπΈ β π·π·πΈπΈ and π΄π΄πΈπΈ β πΆπΆπΈπΈ . Because QR=20, AE=16, and BD=12, so PA=PB=PC=PQ=PR=10, AF=EF=8, and BG=DG=6. From triangle APF, we have π π π π π π β π΄π΄πππΈπΈ = π΄π΄π΄π΄π΄π΄π΄π΄ = 8 10 = 45 So, ππβ π΄π΄πππΈπΈ = arcsin 45 β 53.13 β . Then, from triangle BPG, we have π π π π π π β π΄π΄πππΈπΈ = π΅π΅π΅π΅π΅π΅π΄π΄ = 6 10 = 35 . So, ππβ π΄π΄πππΈπΈ = arcsin 35 β 36.87 β . From the figure, we have πππ΄π΄π΄π΄ οΏ½ = πππ΄π΄πΆπΆ οΏ½ β πππ΄π΄πΆπΆ οΏ½ πππ΄π΄π΄π΄ οΏ½ = ππβ π΄π΄πππΈπΈ β ππβ π΄π΄πππΈπΈ πππ΄π΄π΄π΄ οΏ½ β 53.13 β β 36.87 β πππ΄π΄π΄π΄ οΏ½ β 16.26 β Exercise 22 Given π·π·πΈπΈ is a diameter of β πΏπΏ and π·π·πΈπΈ β₯ πΆπΆπΈπΈ . Let's see triangle DFL. πΏπΏπΆπΆ and πΏπΏπΈπΈ are radii of β πΏπΏ , so πΏπΏπΆπΆ β πΏπΏπΈπΈ . So, triangle DFL is an isosceles triangle and β πΆπΆπΆπΆπΏπΏ β β πΆπΆπΈπΈπΏπΏ . Then, let's see triangle CDL and CFL. πΆπΆπΏπΏ from triangle CDL is congruent to πΆπΆπΏπΏ from triangle CFL and β πΆπΆπΆπΆπΏπΏ β β πΈπΈπΆπΆπΏπΏ . Because β πΆπΆπΆπΆπΏπΏ β β πΆπΆπΈπΈπΏπΏ , β πΆπΆπΆπΆπΏπΏ β β πΈπΈπΆπΆπΏπΏ , and ( πΆπΆπΏπΏ β πΆπΆπΏπΏ , by AAS Congruence Theorem, triangle CDL and CFL are two congruent triangles. So, πΆπΆπΆπΆ β πΈπΈπΆπΆ and β πΆπΆπΏπΏπΈπΈ β β πΈπΈπΏπΏπΈπΈ or πΆπΆπΈπΈ οΏ½ β πΈπΈπΈπΈ οΏ½ . Exercise 23 Plot the center L and draw triangle LPT and LPR. Because point L is the center of the triangle, πΏπΏππ and πΏπΏππ are the radii of the circle, so πΏπΏππ β πΏπΏππ . Because πππ π is a perpendicular bisector of ππππ , then ππππ β ππππ . Because πΏπΏππ β πΏπΏππ , ππππ β ππππ , and πΏπΏππ β πΏπΏππ , by SSS Congruence Theorem, triangle LPT and LPR are two congruent triangles. Then, β πΏπΏππππ β β πΏπΏππππ and πΏπΏππ β₯ ππππ . So, point L is on the perpendicular bisector of ππππ and L lies on πππ π . Because πππ π passes through center L, so πππ π is a diameter of the circle. Exercise 24 The β APB and β CPD are vertical angles, so β π΄π΄πππ΄π΄ β β πΆπΆπππΆπΆ . Then, the β BAD and β BCD are two inscribed angles with the same arc. So, they are congruent and β π΄π΄π΄π΄πΆπΆ β β π΄π΄πΆπΆπΆπΆ . By AA Similarity Theorem, triangle ABP and triangle CDP are similar. So, π΄π΄π΄π΄π΅π΅π΄π΄ = πΆπΆπ΄π΄ π·π·π΄π΄ .
Exercise 25 Let's see at this figure! First, given π΄π΄π΄π΄ β πΆπΆπΆπΆ . Prove that EF=EG. From the figure, by Perpendicular Chord Bisector Theorem, π΄π΄πΈπΈ β π΄π΄πΈπΈ and πΆπΆπΈπΈ β πΆπΆπΈπΈ . Because π΄π΄π΄π΄ β πΆπΆπΆπΆ , so π΄π΄πΈπΈ β πΆπΆπΈπΈ . Let's see triangle AEF and CEG below. Because π΄π΄π·π· and πΆπΆπ·π· are radii of the circle, so π΄π΄π·π· β πΆπΆπ·π· . The hypotenuse and a leg of triangle AEF are congruent to the hypotenuse and a leg of triangle CEG, so by Hypotenuse-Leg Congruence Theorem, triangle AEF is congruent to triangle CEG. So, π·π·πΈπΈ β π·π·πΈπΈ and EF=EG. Then, given EF=EG. Prove that π΄π΄π΄π΄ β πΆπΆπΆπΆ . π·π·π΄π΄ , π·π·π΄π΄ , π·π·πΆπΆ , and π·π·πΆπΆ are radii of the circle, so π·π·π΄π΄ β π·π·π΄π΄ β π·π·πΆπΆ β π·π·πΆπΆ . By Hypotenuse-Leg Congruence Theorem, Ξπ΄π΄π·π·πΈπΈ β Ξπ΄π΄π·π·πΈπΈ β ΞπΆπΆπ·π·πΈπΈ β ΞπΆπΆπ·π·πΈπΈ . Then, π΄π΄πΈπΈ β π΄π΄πΈπΈ β πΆπΆπΈπΈ β πΆπΆπΈπΈ . So, π΄π΄π΄π΄ β πΆπΆπΆπΆ . Exercise 26 Let the point where the tire touches the ground as the point C. Let the point D on the tire so πΆπΆπΆπΆ is a diameter of the tire. Let's see this figure.
πΆπΆπΆπΆ is perpendicular to the ground. Because the bottom edge of the panel is parallel to the ground, so π΄π΄π΄π΄ is parallel to the ground and πΆπΆπΆπΆ β₯ π΄π΄π΄π΄ . By Perpendicular Chord Bisector Theorem, π΄π΄πΆπΆ οΏ½ β π΄π΄πΆπΆ οΏ½ . So, the point C bisects π΄π΄π΄π΄ οΏ½ . Then, my friend is correct because the point where the tire touches the ground bisects π΄π΄π΄π΄ οΏ½ . Exercise 27 The sum of the measure of the interior angles of a quadrilateral is 360 β . So, ππβ πΈπΈ + ππβ πΎπΎ + ππβ πΏπΏ + ππβ πΏπΏ = 360 β 32 β + 25 β + 44 β + ππβ πΏπΏ = 360 β 101 β + ππβ πΏπΏ = 360 β ππβ πΏπΏ = 259 β Exercise 28 Pentagon PQRST has 5 sides. By Polygon Interior Angles Theorem, ππβ ππ + ππβ ππ + ππβ ππ + ππβ π π + ππβ ππ = (5 β 2) β 180 β 85 β + 134 β + 97 β + 102 β + ππβ ππ = 3 β 180 β 418 β + ππβ ππ = 540 β ππβ ππ = 122 β
Chapter 10.3 Using Chords
Please or to post comments