Assignment
University
Massachusetts Institute of TechnologyCourse
Multivariable CalculusPages
1
Academic year
2022
MomParis
Views
15
p {margin: 0; padding: 0;} .ft00{font-size:20px;font-family:Arial;color:#000000;} .ft01{font-size:18px;font-family:ArialMT;color:#000000;} .ft02{font-size:20px;font-family:CambriaMath;color:#000000;} .ft03{font-size:18px;font-family:CambriaMath;color:#000000;} .ft04{font-size:14px;font-family:CambriaMath;color:#000000;} .ft05{font-size:18px;line-height:23px;font-family:ArialMT;color:#000000;} .ft06{font-size:18px;line-height:22px;font-family:ArialMT;color:#000000;} .ft07{font-size:14px;line-height:19px;font-family:CambriaMath;color:#000000;} Example Polar Coordinates To make this more concrete, consider the case in which you want to switch betweenrectangular and polar coordinates. In rectangular coordinates, you use x and y tolocate a point in the plane; in polar coordinates, you use r, the distance from theorigin, and theta, the angle from the x-axis. Thus, the change of variables for this equation is x equals r cosine theta and yequals r sine theta. π₯ = π πππ ΞΈ π¦ = π π ππ ΞΈ So, in fact, if a function f depends on x and y, then you can plug x and y into r andtheta to get the function of f: π = π(π₯, π¦) Then you can ask yourself, what is the partial derivative of a function with respect toa particular variable? You want to take the partial derivative of f with respect to xtimes cosine theta plus the partial derivative of f with respect to y times sine theta. βπ βπ = ππππ₯ βπ₯ βπ + βπβπ¦ βπ¦ βπ = π π₯ πππ ΞΈ π π¦ π ππ ΞΈ In the same way, you can express derivatives either in terms of x and y or in terms ofr and theta with simple relations between them.
Example Polar Coordinates
Please or to post comments