Lecture Note
University
California State UniversityCourse
CS 3590 | Data Communications and NetworkingPages
1
Academic year
2023
Jithin Jacob Issac
Views
0
p {margin: 0; padding: 0;} .ft00{font-size:21px;font-family:NimbusSansBold;color:#000000;} .ft01{font-size:18px;font-family:NimbusSansBold;color:#000000;} .ft02{font-size:15px;font-family:OpenSymbol;color:#000000;} .ft03{font-size:18px;font-family:NimbusSans;color:#000000;} .ft04{font-size:18px;line-height:23px;font-family:NimbusSans;color:#000000;} ELECTRO-OPTIC REVERSIBLE LOGIC GATES Introduction Reversible logic aims to reduce energy dissipation compared to conventionallogic. Optical switches like electro-optic Mach-Zehnder interferometer (MZI) used forreversible photonic gates. Electro-optic MZI Reversible Gates MZI acts as optical switch based on applied electrode voltage. Several reversible gates designed with MZIs: Feynman, Fredkin, OptimizedFredkin, Modified Fredkin Gates characterized by optical cost (MZIs used) and optical delay Implementing Random Boolean Function Function must satisfy bijection property to be reversible. Additional outputs may be needed to make function reversible. Example function: f(x,y,z) = x.y ⊕ z MZI Implementations Combinations of Feynman, (Optimized) Fredkin, Modified Fredkin gatesexplored Some need ancilla (fixed) inputs to get correct logic function Lowest optical cost: Optimized Fredkin + Feynman (7 MZIs) Conclusion Reversible photonic logic gates can implement arbitrary Boolean functions Optimization balances optical cost and delay Results useful for low-power nanophotonic computing circuits
Electro-optic Reversible Logic Gates
Please or to post comments